3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain.

نویسندگان

  • M Yamasaki
  • K Yamada
  • S Furuya
  • J Mitoma
  • Y Hirabayashi
  • M Watanabe
چکیده

l-Serine is synthesized from glycolytic intermediate 3-phosphoglycerate and is an indispensable precursor for the synthesis of proteins, membrane lipids, nucleotides, and neuroactive amino acids d-serine and glycine. We have recently shown that l-serine and its interconvertible glycine act as Bergmann glia-derived trophic factors for cerebellar Purkinje cells. To investigate whether such a metabolic neuron-glial relationship is fundamental to the developing and adult brain, we examined by in situ hybridization and immunohistochemistry the cellular expression of 3-phosphoglycerate dehydrogenase (3PGDH), the initial step enzyme for de novo l-serine biosynthesis in animal cells. At early stages when the neural wall consists exclusively of the ventricular zone, neuroepithelial stem cells expressed 3PGDH strongly and homogeneously. Thereafter, 3PGDH expression was downregulated and eventually disappeared in neuronal populations, whereas its high expression was transmitted to the radial glia and later to astrocytes in the gray and white matters. In addition, 3PGDH was highly expressed throughout development in the olfactory ensheathing glia, a specialized supporting cell that thoroughly ensheathes olfactory nerves. These results establish a fundamental link of the radial glia/astrocyte lineage and olfactory ensheathing glia to l-serine biosynthesis in the brain. We discuss this finding in the context of the hypothesis that 3PGDH expression in these glia cells contributes to energy metabolism in differentiating and differentiated neurons and other glia cells, which are known to be vulnerable to energy loss.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis, Is Preferentially Expressed in the Radial Glia/Astrocyte Lineage and Olfactory Ensheathing Glia in the Mouse Brain

Title 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. Author(s) Yamasaki, M; Yamada, K; Furuya, S; Mitoma, J; Hirabayashi, Y; Watanabe, M Citation The Journal of neuroscience : the official journal of the Society for Neuroscience, 21(19): 7691-7704 Issue ...

متن کامل

An essential role for de novo biosynthesis of L-serine in CNS development.

L-serine plays a versatile role in intermediary metabolism in eukaryotic cells. The physiological significance of its de novo biosynthesis, however, remains largely unexplored. We demonstrated previously that neurons lose the ability to synthesize L-serine after their final differentiation and thus depend on astrocytes to supply this amino acid. This is due to a lack of neuronal expression of 3...

متن کامل

Neutral amino acid transporter ASCT1 is preferentially expressed in L-Ser-synthetic/storing glial cells in the mouse brain with transient expression in developing capillaries.

Nonessential amino acid L-Ser plays an essential role in neuronal survival and differentiation, through preferential expression of the L-Ser biosynthetic enzyme 3-phosphoglycerate dehydrogenase (3PGDH), in particular in glial cells but not in neurons. To seek the molecular candidates responsible for glia-borne L-Ser transport, we performed histochemical analyses on amino acid transporter ASCT1,...

متن کامل

The serine shuttle between glia and neurons: implications for neurotransmission and neurodegeneration.

D-Serine is a physiological co-agonist of NMDARs (N-methyl-D-aspartate receptors) required for neurotransmission, synaptic plasticity and neurotoxicity. There is no consensus, however, on the relative roles of neurons and astrocytes in D-serine signalling. The effects of D-serine had been attributed to its role as a gliotransmitter specifically produced and released by astrocytes. In contrast, ...

متن کامل

L-serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurons.

Glial cells support the survival and development of central neurons through the supply of trophic factors. Here we demonstrate that l-serine (l-Ser) and glycine (Gly) also are glia-derived trophic factors. These amino acids are released by astroglial cells and promote the survival, dendritogenesis, and electrophysiological development of cultured cerebellar Purkinje neurons. Although l-Ser and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 19  شماره 

صفحات  -

تاریخ انتشار 2001